Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Front Microbiol ; 15: 1355599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706966

RESUMO

The emergence of anti-influenza drug-resistant strains poses a challenge for influenza therapy due to mutations in the virus's surface protein. Recently, there has been increasing interest in combination therapy consisting of two or more drugs as a potential alternative approach, aiming to enhance therapeutic efficacy. In this study, we investigated a novel synergistic therapy with a vertical effect using a single-domain VL-HA1-specific antibody against H1N1/PR8 and a horizontal effect using an RNA catalytic antibody with broad-spectrum influenza antiviral drug. We isolated a single-domain VL-HA1-specific (NVLH8) antibody binding to the virus particles showing a neutralizing activity against influenza virus A, specifically H1N1/PR8, as determined by the reduction in plaque number and lower viral HA protein expression in vitro. The neutralizing antibody likely prevented the viral entry, specifically at the viral genome-releasing step. Additionally, the 3D8 scFv hydrolyzed viral RNAs in the cytoplasm, including mRNA, vRNA, and cRNA in MDCK cells. The combined treatment of neutralizing antibodies for a vertical effect and 3D8 scFv for a horizontal effect produced a synergistic effect providing a novel approach against viral diseases when compared with a single treatment. Our results indicated that combining treatment, in particular two proteins exhibiting different mechanisms of action increased the antiviral activity against the influenza virus.

2.
Sci Rep ; 14(1): 8472, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605110

RESUMO

With the lifting of COVID-19 non-pharmaceutical interventions, the resurgence of common viral respiratory infections was recorded in several countries worldwide. It facilitates viral co-infection, further burdens the already over-stretched healthcare systems. Racing to find co-infection-associated efficacy therapeutic agents need to be rapidly established. However, it has encountered numerous challenges that necessitate careful investigation. Here, we introduce a potential recombinant minibody-associated treatment, 3D8 single chain variable fragment (scFv), which has been developed as a broad-spectrum antiviral drug that acts via its nucleic acid catalytic and cell penetration abilities. In this research, we demonstrated that 3D8 scFv exerted antiviral activity simultaneously against both influenza A viruses (IAVs) and coronaviruses in three established co-infection models comprising two types of coronaviruses [beta coronavirus-human coronavirus OC43 (hCoV-OC43) and alpha coronavirus-porcine epidemic diarrhea virus (PEDV)] in Vero E6 cells, two IAVs [A/Puerto Rico/8/1934 H1N1 (H1N1/PR8) and A/X-31 (H3N2/X-31)] in MDCK cells, and a combination of coronavirus and IAV (hCoV-OC43 and adapted-H1N1) in Vero E6 cells by a statistically significant reduction in viral gene expression, proteins level, and approximately around 85%, 65%, and 80% of the progeny of 'hCoV-OC43-PEDV', 'H1N1/PR8-H3N2/X-31', and 'hCoV-OC43-adapted-H1N1', respectively, were decimated in the presence of 3D8 scFv. Taken together, we propose that 3D8 scFv is a promising broad-spectrum drug for treatment against RNA viruses in co-infection.


Assuntos
Coinfecção , Coronavirus Humano OC43 , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Anticorpos de Cadeia Única , Humanos , RNA/metabolismo , Vírus da Influenza A Subtipo H3N2 , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/metabolismo
3.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38058187

RESUMO

The worldwide appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated significant concern and posed a considerable challenge to global health. Phosphorylation is a common post-translational modification that affects many vital cellular functions and is closely associated with SARS-CoV-2 infection. Precise identification of phosphorylation sites could provide more in-depth insight into the processes underlying SARS-CoV-2 infection and help alleviate the continuing COVID-19 crisis. Currently, available computational tools for predicting these sites lack accuracy and effectiveness. In this study, we designed an innovative meta-learning model, Meta-Learning for Serine/Threonine Phosphorylation (MeL-STPhos), to precisely identify protein phosphorylation sites. We initially performed a comprehensive assessment of 29 unique sequence-derived features, establishing prediction models for each using 14 renowned machine learning methods, ranging from traditional classifiers to advanced deep learning algorithms. We then selected the most effective model for each feature by integrating the predicted values. Rigorous feature selection strategies were employed to identify the optimal base models and classifier(s) for each cell-specific dataset. To the best of our knowledge, this is the first study to report two cell-specific models and a generic model for phosphorylation site prediction by utilizing an extensive range of sequence-derived features and machine learning algorithms. Extensive cross-validation and independent testing revealed that MeL-STPhos surpasses existing state-of-the-art tools for phosphorylation site prediction. We also developed a publicly accessible platform at https://balalab-skku.org/MeL-STPhos. We believe that MeL-STPhos will serve as a valuable tool for accelerating the discovery of serine/threonine phosphorylation sites and elucidating their role in post-translational regulation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Fosforilação , SARS-CoV-2/metabolismo , Serina/metabolismo , Treonina/metabolismo
4.
Microorganisms ; 11(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38138051

RESUMO

Pepper plants (Capsicum annuum) with severe leaf curl symptoms were collected in 2013 from Bangalore, Karnataka, India. The detection results showed a co-infection between the tomato leaf curl Joydebpur virus (ToLCJoV) and tomato leaf curl Bangladesh betasatellite (ToLCBDB) through the sequencing analysis of PCR amplicons. To pinpoint the molecular mechanism of this uncommon combination, infectious clones of ToLCJoV and two different betasatellites-ToLCBDB and tomato leaf curl Joydebpur betasatellite (ToLCJoB)-were constructed and tested for their infectivity in Nicotiana benthamiana. Together, we conducted various combined agroinoculation studies to compare the interaction of ToLCJoV with non-cognate and cognate betasatellites. The natural non-cognate interaction between ToLCJoV and ToLCBDB showed severe symptoms compared to the mild symptoms of a cognate combination (ToLCJoV × ToLCJoB) in infected plants. A sequence comparison among betasatellites and their helper virus wasperformed and the iteron resemblances in ToLCBDB as well as ToLCJoB clones were processed. Mutant betasatellites that comprised iteron modifications revealed that changes in iteron sequences could disturb the transreplication process between betasatellites and their helper virus. Our study might provide an important consideration for determining the efficiency of transreplication activity between betasatellites and their helper virus.

5.
Microbiol Spectr ; 11(6): e0144623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37811937

RESUMO

IMPORTANCE: In this study, we confirmed the binding of M13KO7 to Potato virus Y (PVY) using enzyme-linked immunosorbent assay. M13KO7 is a "bald" bacteriophage in which no recombinant antibody is displayed. M13KO7 is easy to propagate by using Escherichia coli, making this method more reasonable in economic perspective. Based on this study, we suggest that M13KO7 detection system has applicability as a novel biological tool for the detection of PVY.


Assuntos
Bacteriófagos , Potyvirus , Bacteriófagos/genética , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Doenças das Plantas
6.
Front Microbiol ; 14: 1224221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799604

RESUMO

Circular single-stranded DNA viruses of the family Geminiviridae encode replication-associated protein (Rep), which is a multifunctional protein involved in virus DNA replication, transcription of virus genes, and suppression of host defense responses. Geminivirus genomes are replicated through the interaction between virus Rep and several host proteins. The Rep also interacts with itself and the virus replication enhancer protein (REn), which is another essential component of the geminivirus replicase complex that interacts with host DNA polymerases α and δ. Recent studies revealed the structural and functional complexities of geminivirus Rep, which is believed to have evolved from plasmids containing a signature domain (HUH) for single-stranded DNA binding with nuclease activity. The Rep coding sequence encompasses the entire coding sequence for AC4, which is intricately embedded within it, and performs several overlapping functions like Rep, supporting virus infection. This review investigated the structural and functional diversity of the geminivirus Rep.

7.
Front Plant Sci ; 14: 1206255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492775

RESUMO

Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite Begomovirus belonging to the family Geminiviridae, causes severe damage to many economically important crops worldwide. In the present study, pathogenicity of Asian (ToLCNDV-In from Pakistan) and Mediterranean isolates (ToLCNDV-ES from Italy) were examined using infectious clones in tomato plants. Only ToLCNDV-In could infect the three tomato cultivars, whereas ToLCNDV-ES could not. Genome-exchange of the two ToLCNDVs revealed the ToLCNDV DNA-A segment as the main factor for ToLCNDV infectivity in tomato. In addition, serial clones with chimeric ToLCNDV-In A and ToLCNDV-ES A genome segments were generated to identify the region determining viral infectivity in tomatoes. A chimeric clone carrying the ToLCNDV-In coat protein (CP) exhibited pathogenic adaptation in tomatoes, indicating that the CP of ToLCNDV is essential for its infectivity. Analyses of infectious clones carrying a single amino acid substitution revealed that amino acid at position 143 of the CP is critical for ToLCNDV infectivity in tomatoes. To better understand the molecular basis whereby CP function in pathogenicity, a yeast two-hybrid screen of a tomato cDNA library was performed using CPs as bait. The hybrid results showed different interactions between the two CPs and Ring finger protein 44-like in the tomato genome. The relative expression levels of upstream and downstream genes and Ring finger 44-like genes were measured using quantitative reverse transcription PCR (RT-qPCR) and compared to those of control plants. This is the first study to compare the biological features of the two ToLCNDV strains related to viral pathogenicity in the same host plant. Our results provide a foundation for elucidating the molecular mechanisms underlying ToLCNDV infection in tomatoes.

8.
Plant Pathol J ; 39(3): 255-264, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37291766

RESUMO

Sweet potato symptomless virus 1 (SPSMV-1) is a single-stranded circular DNA virus, belonging to the genus Mastrevirus (family Geminiviridae) that was first identified on sweet potato plants in South Korea in 2012. Although SPSMV-1 does not induce distinct symptoms in sweet potato plants, its co-infection with different sweet potato viruses is highly prevalent, and thus threatens sweet potato production in South Korea. In this study, the complete genome sequence of a Korean isolate of SPSMV-1 was obtained by Sanger sequencing of polymerase chain reaction (PCR) amplicons from sweet potato plants collected in the field (Suwon). An infectious clone of SPSMV-1 (1.1-mer) was constructed, cloned into the plant expression vector pCAMBIA1303, and agro-inoculated into Nicotiana benthamiana using three Agrobacterium tumefaciens strains (GV3101, LBA4404, and EHA105). Although no visual differences were observed between the mock and infected groups, SPSMV-1 accumulation was detected in the roots, stems, and newly produced leaves through PCR. The A. tumefaciens strain LBA4404 was the most effective at transferring the SPSMV-1 genome to N. benthamiana. We confirmed the viral replication in N. benthamiana samples through strand-specific amplification using virion-sense- and complementary-sense-specific primer sets.

9.
Microbiol Spectr ; 11(4): e0479822, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37367433

RESUMO

Multipartite viruses package their genomic segments independently and mainly infect plants; few of them target animals. Nanoviridae is a family of multipartite single-stranded DNA (ssDNA) plant viruses that individually encapsidate ssDNAs of ~1 kb and transmit them through aphids without replication in aphid vectors, thereby causing important diseases in host plants, mainly leguminous crops. All of these components constitute an open reading frame to perform a specific role in nanovirus infection. All segments contain conserved inverted repeat sequences, potentially forming a stem-loop structure and a conserved nonanucleotide, TAGTATTAC, within a common region. This study investigated the variations in the stem-loop structure of nanovirus segments and their impact using molecular dynamics (MD) simulations and wet lab approaches. Although the accuracy of MD simulations is limited by force field approximations and simulation time scale, explicit solvent MD simulations were successfully used to analyze the important aspects of the stem-loop structure. This study involves the mutants' design, based on the variations in the stem-loop region and construction of infectious clones, followed by their inoculation and expression analysis, based on nanosecond dynamics of the stem-loop structure. The original stem-loop structures showed more conformational stability than mutant stem-loop structures. The mutant structures were expected to alter the neck region of the stem-loop by adding and switching nucleotides. Changes in conformational stability are suggested expression variations of the stem-loop structures found in host plants with nanovirus infection. However, our results can be a starting point for further structural and functional analysis of nanovirus infection. IMPORTANCE Nanoviruses comprise multiple segments, each with a single open reading frame to perform a specific function and an intergenic region with a conserved stem-loop region. The genome expression of a nanovirus has been an intriguing area but is still poorly understood. We attempted to investigate the variations in the stem-loop structure of nanovirus segments and their impact on viral expression. Our results show that the stem-loop composition is essential in controlling the virus segments' expression level.


Assuntos
Afídeos , Fabaceae , Nanovirus , Animais , Nanovirus/genética , Doenças das Plantas , Genoma Viral , Afídeos/genética
10.
Research (Wash D C) ; 6: 0016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930763

RESUMO

Tomato yellow leaf curl virus (TYLCV) dispersed across different countries, specifically to subtropical regions, associated with more severe symptoms. Since TYLCV was first isolated in 1931, it has been a menace to tomato industrial production worldwide over the past century. Three groups were newly isolated from TYLCV-resistant tomatoes in 2022; however, their functions are unknown. The development of machine learning (ML)-based models using characterized sequences and evaluating blind predictions is one of the major challenges in interdisciplinary research. The purpose of this study was to develop an integrated computational framework for the accurate identification of symptoms (mild or severe) based on TYLCV sequences (isolated in Korea). For the development of the framework, we first extracted 11 different feature encodings and hybrid features from the training data and then explored 8 different classifiers and developed their respective prediction models by using randomized 10-fold cross-validation. Subsequently, we carried out a systematic evaluation of these 96 developed models and selected the top 90 models, whose predicted class labels were combined and considered as reduced features. On the basis of these features, a multilayer perceptron was applied and developed the final prediction model (IML-TYLCVs). We conducted blind prediction on 3 groups using IML-TYLCVs, and the results indicated that 2 groups were severe and 1 group was mild. Furthermore, we confirmed the prediction with virus-challenging experiments of tomato plant phenotypes using infectious clones from 3 groups. Plant virologists and plant breeding professionals can access the user-friendly online IML-TYLCVs web server at https://balalab-skku.org/IML-TYLCVs, which can guide them in developing new protection strategies for newly emerging viruses.

11.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768502

RESUMO

Tomato leaf curl New Delhi virus-ES (ToLCNDV-ES), a high threat to cucurbits in the Mediterranean Basin, is listed as a different strain from the Asian ToLCNDV isolates. In this study, the infectivity of two clones previously isolated from Italy and Pakistan were compared in cucumbers, which resulted in the opposite symptom appearance. The swapping subgenome was processed; however, the mechanisms related to the disease phenotype remain unclear. To identify the disease-associated genes that could contribute to symptom development under the two ToLCNDV infections, the transcriptomes of ToLCNDV-infected and mock-inoculated cucumber plants were compared 21 days postinoculation. The number of differentially expressed genes in ToLCNDV-India-infected plants was 10 times higher than in ToLCNDV-ES-infected samples. The gene ontology (GO) and pathway enrichment were analyzed using the Cucurbits Genomics Database. The flavonoid pathway-related genes were upregulated in ToLCNDV-ES, but some were downregulated in ToLCNDV-India infection, suggesting their role in resistance to the two ToLCNDV infections. The relative expression levels of the selected candidate genes were validated by qRT-PCR under two ToLCNDV-infected conditions. Our results reveal the different infectivity of the two ToLCNDVs in cucumber and also provide primary information based on RNA-seq for further analysis related to different ToLCNDV infections.


Assuntos
Begomovirus , Cucumis sativus , Cucumis sativus/genética , Reação em Cadeia da Polimerase , Índia , Paquistão , Itália , Begomovirus/genética , Doenças das Plantas/genética
12.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768717

RESUMO

Microsorum scolopendria is an important medicinal plant that belongs to the Polypodiaceae family. In this study, we analyzed the effects of foliar spraying of chitosan on growth promotion and 20-hydroxyecdysone (20E) production in M. scolopendria. Treatment with chitosan at a concentration of 50 mg/L in both young and mature sterile fronds induced the highest increase in the amount of accumulated 20E. Using RNA sequencing, we identified 3552 differentially expressed genes (DEGs) in response to chitosan treatment. The identified DEGs were associated with 236 metabolic pathways. We identified several DEGs involved in the terpenoid and steroid biosynthetic pathways that might be associated with secondary metabolite 20E biosynthesis. Eight upregulated genes involved in cholesterol and phytosterol biosynthetic pathway, five upregulated genes related to the methylerythritol 4-phosphate (MEP) and mevalonate (MVA) pathways, and several DEGs that are members of cytochrome P450s and ABC transporters were identified. Quantitative real-time RT-PCR confirmed the results of RNA-sequencing. Taken together, we showed that chitosan treatment increased plant dry weight and 20E accumulation in M. scolopendria. RNA-sequencing and DEG analyses revealed key enzymes that might be related to the production of the secondary metabolite 20E in M. scolopendria.


Assuntos
Quitosana , Gleiquênias , Polypodiaceae , Transcriptoma , Gleiquênias/genética , Ecdisterona/farmacologia , Perfilação da Expressão Gênica , Polypodiaceae/genética , RNA , Regulação da Expressão Gênica de Plantas
13.
Arch Insect Biochem Physiol ; 112(2): e21981, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36331499

RESUMO

Bemisia tabaci is a species complex consisting of various genetically different cryptic species worldwide. To understand the genetic characteristics and geographic distribution of cryptic species of B. tabaci in Asia, we conducted an extensive collection of B. tabaci samples in ten Asian countries (Bangladesh, Indonesia, Japan, Korea, Myanmar, Nepal, Philippines, Singapore, Taiwan, and Vietnam) from 2013 to 2020 and determined 56 different partial sequences of mitochondrial cytochrome oxidase subunit I (COI) DNA. In addition, information on 129 COI sequences of B. tabaci identified from 16 Asian countries was downloaded from the GenBank database. Among the total 185 COI sequences of B. tabaci, the sequence variation reached to 19.68%. In addition, there were 31 cryptic species updated from 16 countries in Asia, that is, Asia I, Asia I India, Asia II (1-13), Asia III, Asia IV, Asia V, China 1-6, MEAM (1, 2, K), MED, Australia/Indonesia, Japan (1 and 2). Further, MED cryptic species consisted of 2 clades, Q1 and Q2. This study provides updated information to understand the genetic variation and geographic diversity of B. tabaci in Asia.


Assuntos
Hemípteros , Mitocôndrias , Animais , Filogenia , Ásia , China , Hemípteros/genética , Variação Genética
14.
Arch Insect Biochem Physiol ; 112(2): e21984, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36397643

RESUMO

Begomoviruses are economically important plant viruses and are transmitted by Bemisia tabaci which is a complex of various cryptic species. However, it is uncertain whether most begomoviruses that infect host plants are transmitted by B. tabaci at a similar rate. We compared the begomovirus profiles that were detected in a total of 37 whitefly populations and 52 host plants on Java Island, Indonesia. Seven begomovirus species were detected in B. tabaci at different rates: pepper yellow leaf curl Indonesia virus (PepYLCIV, 56.8%), tomato yellow leaf curl Kanchanaburi virus (TYLCKaV, 46.0%), tomato leaf curl New Delhi virus (ToLCNDV, 21.6%), squash leaf curl China virus (SLCCNV, 21.6%), ageratum yellow vein China virus (AYVCNV, 2.7%), mungbean yellow mosaic India virus (MYMIV, 2.7%), and okra enation leaf curl virus (OELCuV, 2.7%). The begomoviruses were detected at different rates in three cryptic species of B. tabaci. In addition, six begomovirus species were detected in the various host plants at different rates: PepYLCIV (67.3%), TYLCKaV (53.9%), ToLCNDV (13.5%), MYMIV (11.5%), AYVCNV (3.9%), and Tomato yellow leaf curl Thailand virus (TYLCTHV) (1.9%). By comparing the virus presence between whiteflies and plants, five begomoviruses (AYVCNV, MYMIV, PepYLCIV, ToLCNDV, and TYLCKaV) were detected in both samples, but their sequence similarity was highly variable depending on the begomovirus themselves; TYLCKaV was highest (99.4%-100%) than any other viruses. Our study suggests B. tabaci acquire begomoviruses at different rates from plants. This study provides important information on the potential variation in the begomovirus transmission mechanism.


Assuntos
Begomovirus , Hemípteros , Animais , Indonésia , Doenças das Plantas , Tailândia , Insetos Vetores
16.
Front Pharmacol ; 13: 873650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386144

RESUMO

Lymphedema is a debilitating chronic disease that mostly develops as an adverse reaction to cancer treatment modalities such as chemotherapy, surgery, and radiotherapy. Lymphedema also appears to be a deteriorating consequence of roundworm infections, as best represented by filariasis. According to its origin, lymphedema is classified as primary lymphedema and acquired lymphedema. The latter is an acquired condition that, hitherto, received a considerably low attention owing to the less number of fatal cases been reported. Notably, despite the low mortality rate in lymphedema, it has been widely reported to reduce the disease-free survival and thus the quality of life of affected patients. Hence, in this review, we focused on acquired lymphedema and orchestration of molecular interplays associated with either stimulation or inhibition of lymphedema development that were, in vast majority, clearly depicted in animal models with their specific and distinct technical approaches. We also discussed some recent progress made in phytochemical-based anti-lymphedema intervention strategies and the specific mechanisms underlying their anti-lymphedema properties. This review is crucial to understand not only the comprehensive aspects of the disease but also the future directions of the intervention strategies that can address the quality of life of affected patients rather than alleviating apparent symptoms only.

17.
Viruses ; 14(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36298721

RESUMO

Recombination between isolates of different virus species has been known to be one of the sources of speciation. Weeds serve as mixing vessels for begomoviruses, infecting a wide range of economically important plants, thereby facilitating recombination. Chenopodium album is an economically important weed spread worldwide. Here, we present the molecular characterization of a novel recombinant begomovirus identified from C. album in Lahore, Pakistan. The complete DNA- A genome of the virus associated with the leaf distortion occurred in the infected C. album plants was cloned and sequenced. DNA sequence analysis showed that the nucleotide sequence of the virus shared 93% identity with those of the rose leaf curl virus and the duranta leaf curl virus. Interestingly, this newly identified virus is composed of open reading frames (ORFs) from different origins. Phylogenetic networks and complementary recombination detection methods revealed extensive recombination among the sequences. The infectious clone of the newly detected virus was found to be fully infectious in C. album and Nicotiana benthamiana as the viral DNA was successfully reconstituted from systemically infected tissues of inoculated plants, thus fulfilling Koch's postulates. Our study reveals a new speciation of an emergent ssDNA plant virus associated with C. album through recombination and therefore, proposed the tentative name 'Chenopodium leaf distortion virus' (CLDV).


Assuntos
Begomovirus , Geminiviridae , Geminiviridae/genética , DNA Viral/genética , Filogenia , Transferência Genética Horizontal , Paquistão , Doenças das Plantas , Análise de Sequência de DNA , Genoma Viral
18.
Front Plant Sci ; 13: 970941, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247535

RESUMO

Plant viruses are responsible for the most devastating and commercially significant plant diseases, especially in tropical and subtropical regions. The genus begomovirus is the largest one in the family Geminiviridae, with a single-stranded DNA genome, either monopartite or bipartite. Begomoviruses are transmitted by insect vectors, such as Bemisia tabaci. Begomoviruses are the major causative agents of diseases in agriculture globally. Because of their diversity and mode of evolution, they are thought to be geographic specific. The emerging begomoviruses are of serious concern due to their increasing host range and geographical expansion. Several begomoviruses of Asiatic origin have been reported in Europe, causing massive economic losses; insect-borne transmission of viruses is a critical factor in virus outbreaks in new geographical regions. This review highlights crucial information regarding Asia's four emerging and highly destructive begomoviruses. We also provided information regarding several less common but still potentially important pathogens of different crops. This information will aid possible direction of future studies in adopting preventive measures to combat these emerging viruses.

19.
Mar Biotechnol (NY) ; 24(5): 979-990, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36071349

RESUMO

Viral hemorrhagic septicemia virus (VHSV), one of the most important viral marine pathogens worldwide, has a broad range of hosts, such as members of the families Salmonidae and Paralichthyidae. In addition to being highly contagious, VHSV causes high lethality. The transmission of VHSV can be both vertical and horizontal. In fish, the resolution of VHSV infection is challenging. Thus, early diagnosis of VHSV infections is critical, especially in fish farms that have a high population of juvenile fish. Serological methods are commonly used to detect viral antigens. However, limited serological methods are available for marine viruses. In this study, a VHSV-specific single-chain variable fragment (scFv), E5, was selected using the yeast surface display and phage display systems. scFv, a type of recombinant antibody, comprises a variable heavy chain ([Formula: see text]) and a variable light chain ([Formula: see text]) connected by a polypeptide linker. An scFv clone was selected from the VHSV glycoprotein-expressing yeast cells using the bio-panning method. The scFv-encoding gene was subcloned and expressed in the Escherichia coli expression system. The binding affinity of the expressed and purified scFv protein was determined using an enzyme-linked immunosorbent assay and western blotting. Thus, this study reported a method to identify VHSV-specific scFv using bio-panning that can be utilized to develop a diagnostic system for other viruses.


Assuntos
Doenças dos Peixes , Septicemia Hemorrágica Viral , Novirhabdovirus , Anticorpos de Cadeia Única , Animais , Antígenos Virais , Doenças dos Peixes/diagnóstico , Glicoproteínas , Septicemia Hemorrágica Viral/diagnóstico , Novirhabdovirus/genética , Saccharomyces cerevisiae , Anticorpos de Cadeia Única/genética
20.
PLoS One ; 17(8): e0273934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36044435

RESUMO

Flu disease, with high mortality and morbidity, is caused by the influenza virus. Influenza infections are most effectively prevented through vaccination, but it requires annual reformulation due to the antigenic shift or drift of hemagglutinin and neuraminidase proteins. Increasing resistance to available anti-influenza drugs was also recently reported. The M2 surface protein of the influenza virus is an attractive target for universal vaccine development as it is highly conserved and multifunctional throughout the viral life cycle. This study aimed to discover a single-chain variable fragment (scFv) targeting the M2 protein of influenza A H1N1/PR8, showing neutralizing activity through plaque inhibition in virus replication. Several candidates were isolated using bio-panning, including scFv and single-domain VL target M2 protein, which was displayed on the yeast surface. The scFv/VL proteins were obtained with high yield and high purity through soluble expression in E. coli BL21 (DE3) pLysE strains. A single-domain VL-M2-specific antibody, NVLM10, exhibited the highest binding affinity to influenza virions and was engineered into a bivalent format (NVL2M10) to improve antigen binding. Both antibodies inhibited virus replication in a dose-dependent manner, determined using plaque reduction- and immunocytochemistry assays. Furthermore, bivalent anti-M2 single-domain VL antibodies significantly reduced the plaque number and viral HA protein intensity as well as viral genome (HA and NP) compared to the monovalent single-domain VL antibodies. This suggests that mono- or bivalent single-domain VL antibodies can exhibit neutralizing activity against influenza virus A, as determined through binding to virus particle activity.


Assuntos
Anticorpos Neutralizantes , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Orthomyxoviridae , Anticorpos de Domínio Único , Anticorpos Antivirais , Escherichia coli/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vacinas contra Influenza , Influenza Humana/prevenção & controle , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA